Was uns die Natur lehrt

Heilige Geometrie

Eines der großartigsten Geschenke, das die menschliche Seele vom Schöpfer erhalten hat ist die Fähigkeit, sich an der unübertrefflichen Vielfalt und beglückenden Schönheit der Natur zu erfreuen, und eine der angeborenen Eigenschaften des menschlichen Geistes ist es in den äußeren Erscheinungen der Welt und im Aufbau der Schöpfung nach Gesetzmäßigkeiten und Verwandtschaften zu forschen. Dieser Beitrag soll zeigen, in welch erfüllender Weise sich diese beiden Aspekte des Menschseins verbinden lassen und welche Rolle die Heilige Geometrie dabei spielen kann.

 

Wenn man die in der Natur vorkommenden Formen und Wachstumsprinzipien untersucht dann fällt auf, in wie ungewöhnlich vielen Fällen die Zahlen der Fibonacci-Folge und das Verhältnis des Goldenen Schnittes erscheinen. Es ist faszinierend festzustellen welch überragende Rolle die Fibonacci-Zahlen beim Wachstum von Pflanzen und bei der natürlichen Formenbildung spielen und wo überall in der Natur das Verhältnis des Goldenen Schnittes beobachtet werden kann. Am Ende dieses Beitrags werde ich auf die rein zahlenmäßigen Aspekte dieser zwei eng miteinander zusammenhängenden mathematischen Begriffe kurz eingehen.

 

Bei der genaueren Betrachtung der äußeren Strukturen und Formen in der Natur werden wir immer wieder daran erinnert, dass hinter allen schöpferischen Kräften die gleiche spiralig-wirbelnde, aufbauende und formende Intelligenz und Energie steckt. Ob es sich nun um Sonnenblumen, Tannenzapfen, Whirlpools, Tierproportionen, unsere DNA oder Spiralgalaxien handelt, vom unendlich Kleinen bis zum unendlich Großen, immer sind es die gleichen Grundprinzipien, die das Wachstum, den Aufbau und den Ablauf der Dinge bestimmen.

 

Man kann Zahlenmuster und geometrische Grundformen entdecken, die offenbar der gesamten geschaffenen Welt zugrunde liegen. Und so ist die Heilige Geometrie der einzigartige Ort, wo sich Naturwissenschaft und Spiritualität treffen – und schon immer getroffen haben, seit der menschliche Geist sich darum bemüht hat, die Grundmuster und organisierenden Kräfte zu erkennen, die den Aufbau und die äußeren Erscheinungsformen der belebten und (scheinbar) unbelebten Materie bestimmen.

 

Es ist absolut verblüffend zu entdecken wie verbreitet und breit gefächert die den Goldenen Schnitt charakterisierende Zahl  Phi = 1.61803…  in der Natur vorkommt. Es gibt keine Zahl die in der Schöpfung eine so ausgezeichnete Rolle spielt wie die Zahl Phi.

 

Und es gibt keine Zahlreihe, die in der Natur so häufig beobachtet werden kann wie die Fibonacci-Folge, die auch als das Akkumulationsgesetz der Natur verstanden werden kann. Die Fibonacci-Zahlenfolge beschreibt, wie die Dinge wachsen, sich ausbilden und sich vervielfachen auf der Basis des jeweils bereits Bestehenden.

 

Es verwundert auch nicht, dass diese Erkenntnisse in den alten Kulturen auf der ganzen Welt in den Mysterienschulen gelehrt wurden und dass das Wissen dazu verwendet wurde um Tempel, Kirchen und heilige Stätten zu bauen. Die Menschen unseres heutigen Zeitalters haben schon früh begonnen diese alten Strukturen und Plätze zu studieren und die moderne Wissenschaft beginnt langsam zu verstehen, welches die Bedeutung und der Zweck ist hinter diesen Werken, und welche Kenntnisse die alten, in die Geheimnisse der Schöpfung eingeweihten Schöpfer und Erbauer dieser Strukturen hatten.

 

Es soll hier nicht vertieft auf mathematische Details eingegangen werden, man kann die im Folgenden gezeigten, wunderschönen Aufnahmen aus der Natur einfach auf sich wirken lassen. Für jene Leser, die sich auch dem geometrisch-theoretischen Aspekt zuwenden möchten werden am Schluss und sozusagen als intellektuelle Anregung ein paar Bilder gezeigt, bei denen einige Linien eingezeichnet sind, die auf die zugrunde liegende, geometrische Struktur hinweisen. Wer an den Themen rund um die Heilige Geometrie stärker interessiert ist, findet dazu reichhaltiges Material in Büchern und in Artikeln im Internet.

 

Blume des Lebens
Blume des Lebens
Download
Quelle 'Was uns die Natur über Heilige Geometrie lehren kann'
(mit Bildmaterial)
transinformation.net-Was uns die Natur ü
Adobe Acrobat Dokument 7.7 MB

Kosmische Formen der fünf Elemente und ihrer Anwendung im Alltag

Die Heilige Geometrie der platonischen Körper

Die Formen der Heiligen Geometrie, die auch unter dem Begriff »platonische Körper« bekannt sind, stellen die Grundbausteine für alles auf dieser Welt Existierende dar. Bei diesen platonischen Körpern handelt es sich um Tetraeder (Feuer), Hexaeder (Erde), Oktaeder (Luft), Dodekaeder (Äther) und Ikosaeder (Wasser). Der griechische Philosoph Platon hat die Körper ausführlich beschrieben und sie den Elementen des platonischen Weltbildes zugeordnet. Die Formen erzeugen klare, lichtvolle, hoch schwingende und strukturierte Botschaften. Diese Lichtinformation der heiligen Energie ist in der Lage, die Heiligkeit und damit auch die Heilung in allen Dingen wiederherzustellen. Ebenso kann sie uns Menschen in die Lage versetzen, unser Bewusstsein in eine höhere Stufe zu erheben, in Kontakt mit dem höheren Wissen zu treten und somit neue Erkenntnisse zu erlangen bzw. Fähigkeiten zu entwickeln, den Lichtkörperprozess zu beschleunigen, alte Wunden in Energiefeldern zu heilen, mehr Selbstbewusstsein zu entwickeln, in Einklang mit unserer Seelenabsicht zu kommen und damit auch mehr Selbstbewusstsein zu entwickeln. Dieses innovative Buch führt in die Heilige Geometrie und ihre Wirkungsweise im praktischen Gebrauch ein und begleitet den Leser dabei auch auf einer spannenden Reise zum eigenen Selbst. Es zeigt, dass alles, was uns auf diesem Planeten umgibt, aus »in Form gebrachter« Energie, aus »In-form-ation«, besteht. Liebe, Heilung, Erfolg, Wohlstand und Glück werden verstärkt, wenn wir die Gesetze der Heiligen Geometrie verstehen lernen und sie in unserem Leben zur Anwendung bringen.

 

Quer verbunden

'Das goldene Verhältnis ist der goldene Faden, der in das Gewebe der Schöpfung hineingewoben ist, das Unterschiedliche vereinigend, das ganze zu einem harmonischen Ganzen zusammenfassend.'

Jonathan Quintin


Zur Mathematik

Eines der großartigsten Geschenke, das die menschliche Seele vom Schöpfer erhalten hat ist die Fähigkeit, sich an der unübertrefflichen Vielfalt und beglückenden Schönheit der Natur zu erfreuen, und eine der angeborenen Eigenschaften des menschlichen Geistes ist es in den äußeren Erscheinungen der Welt und im Aufbau der Schöpfung nach Gesetzmäßigkeiten und Verwandtschaften zu forschen. Dieser Beitrag soll zeigen, in welch erfüllender Weise sich diese beiden Aspekte des Menschseins verbinden lassen und welche Rolle die Heilige Geometrie dabei spielen kann.

 

Wenn man die in der Natur vorkommenden Formen und Wachstumsprinzipien untersucht dann fällt auf, in wie ungewöhnlich vielen Fällen die Zahlen der Fibonacci-Folge und das Verhältnis des Goldenen Schnittes erscheinen. Es ist faszinierend festzustellen welch überragende Rolle die Fibonacci-Zahlen beim Wachstum von Pflanzen und bei der natürlichen Formenbildung spielen und wo überall in der Natur das Verhältnis des Goldenen Schnittes beobachtet werden kann. Am Ende dieses Beitrags werde ich auf die rein zahlenmäßigen Aspekte dieser zwei eng miteinander zusammenhängenden mathematischen Begriffe kurz eingehen.

 

Bei der genaueren Betrachtung der äußeren Strukturen und Formen in der Natur werden wir immer wieder daran erinnert, dass hinter allen schöpferischen Kräften die gleiche spiralig-wirbelnde, aufbauende und formende Intelligenz und Energie steckt. Ob es sich nun um Sonnenblumen, Tannenzapfen, Whirlpools, Tierproportionen, unsere DNA oder Spiralgalaxien handelt, vom unendlich Kleinen bis zum unendlich Großen, immer sind es die gleichen Grundprinzipien, die das Wachstum, den Aufbau und den Ablauf der Dinge bestimmen.

 

Man kann Zahlenmuster und geometrische Grundformen entdecken, die offenbar der gesamten geschaffenen Welt zugrunde liegen. Und so ist die Heilige Geometrie der einzigartige Ort, wo sich Naturwissenschaft und Spiritualität treffen – und schon immer getroffen haben, seit der menschliche Geist sich darum bemüht hat, die Grundmuster und organisierenden Kräfte zu erkennen, die den Aufbau und die äußeren Erscheinungsformen der belebten und (scheinbar) unbelebten Materie bestimmen.

 

Es ist absolut verblüffend zu entdecken wie verbreitet und breit gefächert die den Goldenen Schnitt charakterisierende Zahl  Phi = 1.61803…  in der Natur vorkommt. Es gibt keine Zahl die in der Schöpfung eine so ausgezeichnete Rolle spielt wie die Zahl Phi.

 

Und es gibt keine Zahlreihe, die in der Natur so häufig beobachtet werden kann wie die Fibonacci-Folge, die auch als das Akkumulationsgesetz der Natur verstanden werden kann. Die Fibonacci-Zahlenfolge beschreibt, wie die Dinge wachsen, sich ausbilden und sich vervielfachen auf der Basis des jeweils bereits Bestehenden.

 

Es verwundert auch nicht, dass diese Erkenntnisse in den alten Kulturen auf der ganzen Welt in den Mysterienschulen gelehrt wurden und dass das Wissen dazu verwendet wurde um Tempel, Kirchen und heilige Stätten zu bauen. Die Menschen unseres heutigen Zeitalters haben schon früh begonnen diese alten Strukturen und Plätze zu studieren und die moderne Wissenschaft beginnt langsam zu verstehen, welches die Bedeutung und der Zweck ist hinter diesen Werken, und welche Kenntnisse die alten, in die Geheimnisse der Schöpfung eingeweihten Schöpfer und Erbauer dieser Strukturen hatten.

 

Es soll hier nicht vertieft auf mathematische Details eingegangen werden, man kann die im Folgenden gezeigten, wunderschönen Aufnahmen aus der Natur einfach auf sich wirken lassen. Für jene Leser, die sich auch dem geometrisch-theoretischen Aspekt zuwenden möchten werden am Schluss und sozusagen als intellektuelle Anregung ein paar Bilder gezeigt, bei denen einige Linien eingezeichnet sind, die auf die zugrundeliegende, geometrische Struktur hinweisen. Wer an den Themen rund um die Heilige Geometrie stärker interessiert ist, findet dazu reichhaltiges Material in Büchern und in Artikeln im Internet.

 

Der Fibonacci-Folge und des Goldenen Schnittes

Die Fibonnacci-Folge erhielt ihren Namen vom italienischen Mathematiker Leonardo von Pisa (1170 – 1250), genannt Fibonacci. In seinem Buch Liber abaci findet sich im 12. Kapitel folgende Aufgabe: „Ein Mann hält ein Kaninchenpaar an einem Ort, der gänzlich von einer Mauer umgeben ist. Wir wollen nun wissen, wie viele Paare von ihnen in einem Jahr gezüchtet werden können, wenn die Natur es so eingerichtet hat, dass diese Kaninchen jeden Monat ein weiteres Paar zur Welt bringen und damit im zweiten Monat nach ihrer Geburt beginnen.“

 

Wenn man sich bemüht, diese Frage zu beantworten, kommt man auf folgende Zahlenfolge:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …    für die Anzahl der neugeborenen Kaninchenpaare nach einem, zwei, drei, … Monaten.

 

Wie man sofort erkennt kann man diese Zahlenfolge leicht beliebig weiter fortsetzen, denn sie hat ein sehr einfaches Bildungsgesetz. Welches?

 

Man kann leicht bestätigen: Jede Zahl dieser Folge entsteht, indem man die beiden vorhergehenden Zahlen addiert.

Im 7. Monat kommen 13 Paare zur Welt, diese Zahl ergibt sich als Summe der beiden vorangehenden Zahlen: 5 + 8 = 13;

Im 12. Monat kommen 144 Kaninchenpaare zur Welt; es ist 55 + 89 = 144 ; usw.

 

Der goldene Schnitt

Man spricht von der Stetigen Teilung oder vom Goldenen Schnitt, wenn eine Strecke a so geteilt wird, dass das Verhältnis der Stecke a zur größeren Teilstrecke x gleich groß ist wie das Verhältnis von x zu kleineren Teilstrecke  y = a – x:

a : x = x : (a – x)


Mit etwas Mathematik findet man, dass dieses Verhältnis den Wert hat

a : x = (1 + √ 5 ) / 2 = 1.61803…


Diese Zahl nennt man auch Phi (im Unterschied zur Kreiszahl Pi = 3.14…).

Es ist also Phi = 1.61803… (eine so genannte irrationale Zahl, die nicht als Verhältnis von zwei ganzen Zahlen geschrieben werden kann).


Die große Teilstrecke wird Major M genannt, die kleinere Teilstrecke heißt Minor m.

Diese Art Teilung heißt ‚Stetige Teilung’, weil wenn man jetzt y in der größeren Strecke x abträgt, dann wird x durch y wieder im gleichen Verhältnis geteilt. Das heißt es ist


x : y = y : (x – y) = Phi


In der gleichen Weise kann man fortfahren: wenn immer man die neue kleinere Teilstrecke in der unmittelbar größeren abträgt, wird diese wieder im Verhältnis Phi geteilt. Auch in der umgekehrten Richtung funktioniert es: verlängert man die gegeben Strecke a um die Strecke x, dann wird die neue Strecke a + x durch a im Verhältnis des Goldenen Schnittes geteilt:


(a + x) : a = a : x = Phi.


Bildet man aus den Strecken x und y ein Rechteck, dann erhält man ein so genanntes ‚Goldenes Rechteck’, das man mit dem gleichen Verfahren in kleinere Goldene Rechtecke aufteilen kann oder zu größeren Goldenen Rechtecken erweitern kann.

Durch Einzeichnen der Viertelbögen erhält man eine ‚Goldene Spirale’, die man häufig in der Natur findet.



Welches ist der Zusammenhang zwischen den Fibonacci-Zahlen und dem goldenen Schnitt?

Wenn man von der Fibonacci-Folge zwei aufeinanderfolgende Zahlen nimmt und die größere Zahl durch die vorangehende Zahl teilt, dann erhält man einen Wert, der umso genauer bei der Zahl Phi liegt, je weiter man in der Fibonacci-Folge voranschreitet:

 

89 : 55 = 1.61818 ,   144 : 89 = 1.61798 ,   233 : 144 = 1.61806 ,   377 : 233 = 1.61803 (dieser Wert stimmt, auf 5 Stellen nach dem Komma gerundet, bereits mit der Zahl Phi überein).

 

Entsprechend erhält man, wenn man Rechtecke mit den Fibonacci-Zahlen bildet, annähernd Goldene Rechtecke mit den darin enthaltenen (annähernden) Goldenen Spirale: Goldene Rechtecke und der Goldene Schnitt kommen auch in der Kunst außerordentlich häufig vor. Sehr oft haben Künstler diese geometrischen Proportionen verwendet, ohne sich dessen bewusst zu sein, einfach weil sie die Werke, die sie in mit den entsprechenden Proportionen geschaffen haben als besonders harmonisch empfunden haben. Im Internet findet man zu diesem Thema überaus viele überraschende und erhellende Beispiele.

 

Das Feld für eigene Forschungen auf diesem Gebiet, aber auch für eigene, kreative, künstlerische Schöpfungen mit diesen von der Natur bevorzugten Zahlen und Proportionen ist weit offen und kann von jedermann ohne tiefe Vorkenntnisse genutzt werden!